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ABSTRACT

A derivation of the general integral for the deter-

mination of thermal-radiation configuration factors is

presented, together with a scheme for its solution using

JPL's IBM 7090 computer. An analytical method for deter-

mining the rather complex analytical expression for the

integrand and limits of integration between a particular

pair of geometrical shapes is outlined. Two examples of

the method's employment are presented. Finally, a table

of integrals for configuration factors between pairs of

commonly encountered geometrical shapes is given. These

integrals, with two exceptions, are completely general in

regard to the relative orientation and size of the geometries.

I. STATEMENT OF THE PROBLEM

For spacecraft the primary mode of heat transfer between external surfaces and in many instances

between internal surfaces is thermal radiation. Because of the geometrical complexity of spacecraft, the

analytical determination of the net heat-exchange rates between surfaces is mathematically very difficult.

Exact mathematical solutions are virtually impossible. To make mathematical analysis of radiant heat

exchange feasible, the spacecraft is divided into units and each unit is analyzed, assuming its surface to be

isothermal. This assumption introduces some error, the magnitude of which depends upon the thermal situation.

[n general, errors which result from dividing the spacecrah into units and postulating that the surfaces of each

unit are isothermal can he minimized by careful subdivision and by dealing with small units.
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The type of equation generally used in determining the thermal interactions between isothermal

surfaces separated by a non-absorbing medium is 1

where:

q12 = net heat-exchange rate between Surface 1 and Surface 2, Btu/hr

cv ffi Stefau-Bohzrnan constant ffi 1.19 × 10 -10 Btu/in2hr°B 4

A 1 ffi area of Sudace 1, in 2

f12 ffi an influence coefficient, dimensionless

T1 = temperature of Sudace 1, °B

T2 ffi temperature of Surface 2, °R

(1)

Even using simplified equations such as Eq. (1) mathematical analysis, though feasible, is still quite

difficult. The major obstacle is the determination of the influence coefficient f12 which is a function of the

emissivities and absorptivlties of surfaces A 1 and A 2 and the configuration factor between the surfaces.

Though considerable data are available regarding values of emissivity and absorptivity, little is available

regarding configuration factors; thus, this is crux of the problem. Without configuration factors, meaningful

analysis is impossible. This lack of configuration factor data is to be expected, however, since configuration

factors are functions of the geometries and relative orientations of the surfaces involved, of which a 8reat

number of variations are of practical interest.

1McAdams, W.H., Heat Transmission, McGraw-Hill Book Co., Third Edition, 1954.
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II. DERIVATION OF THE GENERAL INTEGRAL FOR CONFIGURATION FACTORS

In arriving at a configuration factor, the difficulty arises from the inability to obtain solutions to the

following general quartic integral

1= dA 1 dA 2
F12 r2

wA 1

(2)

where:

F12 -- the configuration factor

A 1 -- the area of surface A 1 as viewed from surface A 2

A 2 - the area of surface A 2 as viewed from dA 1

r = the magnitude of the vector r between the elemental areas dA 1 and dA 2

_b1 = the angle formed by r and the normal to dA 1

_b2 -- the angle formed by r and the normal to dA 2

For curved surfaces, the limits of the inner integral are, in general, functions of the location of the elemental

area, dA 1" For a particular pair of surfaces and their relative orientation, the integral becomes very difficult

indeed to integrate, when the proper expressions are substituted for the terms appearing in the integrand and

limits.

To clarify the meaning of the integral, a derivation of Eq. (2) will be presented. The configuration

factor between Surfaces 1 and 2 is defined as that fraction of the total flux leaving Surface 1 incident on

Surface 2. For diffusely radiating surfaces, the configuration factor is a function of the geometries and

relative orientation of the surfaces. If the radiation is non-diffuse, the configuration factor is also a function

of the directional distribution of the flux leaving Surface 1.

The sketch following shows an elemental area dA 1 of total emissive power IF, radiating in all

directions from one side with some of its radiation being intercepted by another elemental area dA 2 at a

distance r from dA 1" A line connecting the elemental areas dA 1 and dA 2 forms the angles _1 and _b2 with the
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n I

_1 n2

_2

SURFACE 2

normals n 1 and n 2 to the elemental areas, respectively. The heat-transfer rate from dA 1 to JA2, written an

_q1-+2' is directly proportional to the product of the apparent area of a_A 1 as seen from dA 2 (or dA 1 cos 41)

and the apparent area of JA 2 as seen from dA 1 or (dA 2 cos 42) and also is inversely proportional to the

square of the separation distance r. A proportionality term I 1 which is the emitted flux at the surface of dA

must be introduced. Thus, dql_, 2 is

1 )

I 1 dA 1 cos4 I_A 2 cos42

r 2

(3)

If the flux leaving Surface 1 is not diffuse, 11 is a function of the angle 41; thus, Eq. (3) becomes

dql..2 =

I1(41 ) cos 41 cos 42 d,4l _A

r 2
(4)

Since W is the total emissive power of Sudace 1, then dql_, 2 can also be expressed by

dq 1-) 2 = WdA l FdA 1-* dA 2
(5)

where FdA 1-+ dA 2 is the configuration factor between the elemental areas dA 1 and dA 2" Setting Eq. (4) and

(5) equal yields

dA1 FdAI-*dA 2 ffi

11(4 I) cos 41 cos q62 dA 1 dA 2

]Vr2
(6)

4
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Now, W is related to the mean directional flux 1m leaving dA 1 by 1_ = 7r lm; thus Eq. (6) becomes

dA 1 FdAI..dA2

I1(_1 ) cos <_1 cos _52 dA 1 dA 2

7rl r 2
in

(7)

To determine the configuration factor between Surfaces 1 and 2, integrate first dA 2 over A 2 then integrate

dA 1 over A 1" The first integration yields

dA1 FdAI-,A 2 = dA 1
f2 11 (<_1) cos _b1 cos _b2 dA 2¢r IIn r 2

(8)

and the second integration yields

A 1 F A = A 1 F12 =1-*A2

cos qb1 cos qb2 dA 1 dA 2

r 2
(9)

It will be assumed from this point that Surfaces 1 and 2 are diffusely radiating and, therefore, I 1 (_l)/IIn = 1

for all angles of _b1. Thus Eq. (6) becomes

F12 = __

erA 1

cos _b1 cos qb2 dA 1 dA 2

r 2
(10)

It should be pointed out that for diffusely radiating surfaces, the reciprocity principle is valid; that is,

A 1 FI2 - A 2 F21 (II)

Until recently, solutions of Eq. (10) appearing in the literature for geometrically simple pairs of

surfaces of very simple relative orientation (e.g., perpendicular rectangles sharing a common edge), were

sufficient to make the necessary calculations. However, these solutions can no longer be applied to current

problems because of their geometrical complexity. Therefore, it is imperative that a suitable technique be

devised for obtaining solutions of the integral. Numerical integration using a digital computer was found to be
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suitable and desirable, since it permits parametric studies of various surfaces to be made and yet is flexible,

convenient, and rapid.

The technique relies upon the fact that complex surfaces can, with a few exceptions, be broken down

or divided into units of elementary shapes which can be represented by analytical expressions, such as cones,

cylinders, plates, and spheres. The technique is essentially as follows: Equation (10) is developed for a

given combination of elementary shapes in a general manner so that the derived integral is applicable to any

relative orientation between the shapes, with as few exceptions as possible. The resulting integral is then

programmed for the computer. Various constants and limits of integration which define a particular geometrical

situation are supplied by the engineer for each specific case. Clearly, once n general integral has been

developed for a particular combination of surfaces, the integral can be repeatedly used for different orienta-

tions and physical sizes, simply by changing the constants and limits of integration. Since it is necessary to

develop a separate integral for each combination of geometries, representative geometries were studied to

determine the degree of difficulty involved in developing an integral. It was found that the derivation of the

integrand and limits could be expeditiously carried out and that the derivation is rather straightforward.
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III. PROCEDURE FOR DETERMINING INTEGRAND AND LIMITS OF INTEGRATION

Let P1 and/'2' P1 and/'3' and P2 and P4 be two points respectively on each of the lines, r, n 1 and

n2 (see sketch below). The analytical expression for the separation distance r is simply the expression for

the length of a line, or

r2 = (Xl- x2)2 + (Yl- Y2 )2 + (Zl- z2)2 (12)

where the points P1 and P2 lie at the centroids of the elemental areas dA 1 and dA 2. The lengths of the

normals between the points are

n2 = (Xl- x3)2 + (Yl-Y3 )2 + (Zl- z3)2 (13)

and

n2 = (x2- x4)2 + (Y2-Y4 )2 + (z2- z4)2 (14)

SURFACE Ix_

SURFACE 2

Recall that the angles _b1 and _b2 are formed by r and the normals n 1 and n 2 respectively. If a, _, and Tare

the direction angles of r; ct 1, _1' and 9/1 are the direction angles of nl; and a 2, _2' and T2 are the direction

angles of n2; then

cos _b1 = cos a cos a 1 + cos/_ cos/_1 + cos 9/cos Yl (is)
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and

cos _b2 = cos a cos a 2 + cos 13 cos _2 + cos T cos T2 (16)

Using the points on and the lengths of rl, nl, and n2, the direction cosines of these lines are obtained from

xI - x2 x3 - xI x2 - x 4
COS CZ ---- , COS (_l = ' C08 ")/2 --

r n I n 2

Yl - Y2 Y3 - Yl Y2 - Y4
cos _ = , cos_I = ' cos _2 =

r n I n2

z 1 - z 2 z 3 - z I z 2 - z4
cost = • cosT1 = , cos_2 =

r n I n 2

(17)

T_us,

Xl-X2 x3-Xl Yl-Y2 Y3-Yl Zl-Z2 z3-zl
COS _l ffi + + (18)

r n 1 r n 1 r n 1

and

Xl-X2 x2-x4 Yl-Y2 T2-Y4 Zl-Z2 z2-z4
cos qb2 = + + (19)

r n 2 r n2 r n2

When curved surfaces are involved, the area viewed of either or both of the Surfaces 1 and 2 may be

functions, respectively, of the locations of dA 1 and dA 2. For example, that area A 1 of a sphere, which is in

view of an elemental area dA 2, depends upon the location of dA 2. In such situations, the limits of integration

(that is, boundaries of the viewed area), are obtained by setting either or both of the functions cos q_l and

cos qb2 equal to zero.

Recapitulating, the procedure is: (1) determine two points on each of the lines r1, n 1, and n2;

(2) determine the lengths between the points; (3) using the points and lengths, determine the direction cosines

8
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of the lines rl, nl, and n2; and (4) using the direction cosines, determine the analytical expression for cos q51

and cos q_2"

A. Example: Two Arbitrarily Oriented Plates

As an example, consider the very common situation of two flat plates of arbitrary size and relative

orientation, as shown below. The coordinate system was chosen so that Surface 1 lies in the Yl = 0 plane. 2

/

7 /

/I

- it /I L

PLATE I

Xl

m

The line l lies both in the plane of Surface 2 and in the z 2 = 0 plane; thus, line l represents the line formed

by the intersection of the plane of Surface 2 and the x2Y 2 plane. The line m lies both in the plane of Surface

2 and in the x 2 = 0 plane; thus, it represents the line formed by the intersection of the plume of plate 2 and

the Y2 z2 plane. Surface 2 lies in the plane defined by the coplanar lines l and m. The x 2 z 2 coordinate axes

originate at the intersection of l and m with the y axis which occurs at a distance L along y. These axes are

parallel and coplanar with the XlZ 1 coordinate axes. Two angles are formed, _ and K, which describe the

orientation of Surface 2 to Surface 1. With the coordinates defined, an integrand for Eq. (10) can now be derived.

2 Coordinates y and Yl are identical.
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Using the centroids of the elemental areas, dA

necessary selection) yields

1 and dA 2' as the locations of two points on r (a

and

(x 1, 0, z 1)

(x 2, L - x 2 tan dJ + z 2tan _,, z 2)

where L - x 2 tan _ + z 2 tan _. is the y point of dA 2.

From Eq. (13), the separation distance between dA 1 and dA 2 is

r2 = (x 2 - Xl)2 + (L - x 2 tan _ + x 2 tan h) 2 + (z 2 - Zl)2 (20)

The direction cosines of r are

COS 0_ :

COS _ :

COS')/ :

x 2 - x 1

L - x 2 tan _b + z 2 tan _.

z 2 - z 1

(21)

Since n 1 originates at the centroid of dA1, one point on n 1 is

(x 1, O, z 1)

For the other point, it is convenient to use the intersection of n 1 with the plane of Surface 2; thus,

(Xl, L - x I tan _ + z I tan A,, Zl)

The distance between these points is

n 1 ffi (x 1-xl)2 + (L-x ltan_+z 1 tan_.)2 + (z l_zl)2

10
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or

n 1 = L-x 1 tan_+z 1 tan (22)

The direction cosines are

or cos ctI = O, cos _I

x 1 -x 1
COS el, 1 =

n I

COS /_1 ----

L-x 1 tan_b-z 1 tan A.

z 1 - z 1
cos 9"1 =

r

= 1, and cos 9' 1 = 0. Then from the direction cosines of n 1 and r,

C08 _l =

L - x2 tan _b + z 2 tan

(23)

(24)

Using the centroidal point of dA 2 as one point on n2, and the intersection point of n2 with the plane of

Plate 1 as the other:

and

(x2, L - x 2 tan _b + z 2 tan _, z2)

Ix 2 - (L - x 2 tan _b+ z 2 tan _.) tan _b, 0, z 2 + (L - x 2 tan _b + z 2 tan _) tan _.]

the length of n 2 between these two points is

n_ : Ix 2-x 2 +(L -x 2 tan _+z 2 tan K)tan _b] 2 + (L -x 2 tan _ + z 2 tan _.)2

+ [z 2 -z 2 -(L -x 2 tan t_+z 2 tan )k) tan )k] 2

11
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or

n2 = (L - x 2 tall _ + z 2 tan _.) (1 + tan 2 _ + tan 2 )_)_ (25)

The direction cosines of n 2 are

COS OL2 =

t,,.

(1 + tan 2 _ + tan 2 _-)_

COS _2 =

(1 + tan 2 _b + tan 2 )_)_

cos 3/2 = --

tan

(1 + tan 2 _ + tan 2 _.)_

(26)

Therefore, cos 0 2 is

cos 0 2 =

r (1 + tan 2 _ + tan 2 )_)_

[(x2-xl) tan _+L -x 2 tan _+ z 2 tan _, +(z2-z 1) tan _]

or

COS 02 =

L - Xl tan _ + zl tan S.

r(l + tan2 _ + tan2 _.)_

(27)

Since Surface 1 was located in the y = 0 plane, dA 1 is given by the simple expression,

dA 1 = dxldZ 1 (28)

Since allexpressions are in terms of Xl, x 2, z 1, and z2, the element dA 2 must be expressed in terms of x 2

and z 2. The transposition of dA 2 into the x2z 2 plane gives the proper expression for dA 2 or

dA 2 =

dx 2 dz 2

cos _ cos
(29)

12
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Substituting the preceding expressions into Eq. (10) gives, for the configuration factor between two skewed

plates, Eq. (30):

(L - x 1 tan q: + z 1 tan _)(L - x 2 tan _ + z 2 tan _.) dx I dz I dx 2 dz 2

FI2 = _rA_- (l+tan2 ,_+tan2 h.)_ [(x2_xl)2+(L_x2tan _+z2tan _)2+(z2_zl)212cos_ cos_, " (30)

By programming this integrand for a computer, any configuration factor between two plates with one exception

can be determined by supplying to this integral the limits of integration which define the boundaries of the

plates and by supplying the constants L, _, and _. Examination of this integral reveals the exception: the

integral is not valid as either or both q/and _ approach 90 deg.

In arriving at the limits of integration, it is assumed that the boundaries of the plate will be

mathematically expressible, either exactly or to reasonable accuracy. Therefore, when the integration is

carried out along z axes first, the boundaries of Surface 1 and Surface 2 are given by the functional

expressions

z1 = f(x 1)

and

z 2 = g(x 2)

Substituting the limits of integration into Eq. (30) yields

b2 a 2

_l(X2 )

(L - x I tan q/+ z 1 tan _)(L - *2 tan q: + z 2 tan _.) dz 2 dx 2 dz 1 dx 1

(1+ tan 2_+ tim 2 h.) _ [(x 2-xl)2+(L-x 2 tan _+ z 2 ttm _.)2+(z 2_zl)2 ]2 cos_ cos_.
(31)

/

The functions gl (x2) and _2 (x2) must be the expressions of the projections of the boundaries into the x 2 z 2

plane. Caution should be exercised in arriving at the limits of integration when Surface 2 is skewed at such

an angle that either the back of Surface 2 can be seen from a portion of Surface 1 or vice versa. In such a

case, the integration should extend only over that area which is in view of another area with all other areas

13
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being treated by a separate integral. The point here is that the integration should always be made only over

areas in which dA 1 can see dd 2 or vice versa.

Recall that the coordinate system for the two plates was chosen so that the two arbitrary angles

were form _ and _. However, two angles are not a necessity, since if the plates are rotated about the y axis

while maintaining the same relative orientation, the same degree of generality can be obtained using only one

angle. The usefulness of two arbitrary angles becomes apparent by noting that with two angles of skewness,

the plates can be placed in a coordinate system arbitrarily with only the one restriction that Surface 1 lies in

the y = 0 plane; thus, the expressions for the limits of integration are greatly simplified by rotating and/or

translating the location of Surface 1 within the y = 0 plane. With only one angle of skewness, the plates can

be placed into coordinate systems in only one position relative to either the x 1 or the z I axis and thus, the

limits of integration are fixed. Permitting only one angle of skewness, i.e., A. = 0, Eq. (31) reduces to the

following:

f2(Xl ) a2 g2(x2 )

dz 2 dx 2 dz 1 dx 1

b 1 /l(Xl) a 1 gl(x2) [(x2-xl)2+(L-x2tan_)2+(z2-zl )212

F12 = /b2/

(32)

B. Example: Sphere and Plate of Arbitrary Orientation

Consider, as another example, the formulation of Eq. (10) for the configuration factor between a

sphere of radius p and a plate, as shown in the following sketch. The Xl, y, and z I coordinates were chosen

so that the origin of the coordinates lies at the center of the sphere. The sphere and plate are then rotated

about the center of the sphere until the plate is perpendicular to the xlY plane and parallel to the XlZ 1 plane.

The x2Y2Z 2 coordinate system is formed at the intersection of the plane of the plate and the y axis. The x 2

and z 2 axes are parallel and coplanar with the x 1 and z I axes, respectively. The origin of the x2Y2Z 2

system is located at a distance L along the y axis from the origin of the x ly z 1 system. With the coordinates

defined, an integrand for Eq. (10) can now be derived.

14
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z I

SURFACE I n I

/ _____,,_:-W_

x I

SURFACE 2

(PLATE)--_

z2

/

/
/

/
_2
x2

/L
/

/
/

_-_ Y

Using the centroids of the elemental areas dA 1 and dA 2 as the locations of two points on r, yields

(X 1, Y, Z 1)

and

(x 2, L, z 2)

Transforming Xl, y, and z 1 into spherical coordinates to describe the sphere, yields for (xl, Y, z 1)

(p cos_bsin 8, pcos_b cos 8, p sin_b)

The distance between dA 1 and dA 2 becomes

r2 = (x 2-p cos_b sin 8) 2 + (L-p cos_b cos 8) 2 + (z 2-p sin _b) 2 (33)

15
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and the direction cosines of r are

COS (g ----

COB /_ =

COS '_ =

x 2-p cos_J sin

L - p cos _ cos 8

z 2 - p sin ¢

(34)

Since n 1 passes through the centroid of dA 1, one point on n 1 is (p cos _ sin 8, p cos ¢ cos 8, p sin _b).

Because n 1 is normal to the surface of the sphere, it must pass through the origin of the xlYZ 1 coordinate

system; hence another point on n 1 is

(o, o, o)

The length of n 1 is, therefore, equal to the radius of the sphere, or n 1 = p. The direction cosines of n 1 are

cos a 1 = cos _b sin 8

cos fll = cos 9 cos 8

cos T1 = sin _b

(35)

From the direction cosines of n 1 and r,

1
cos ¢1 = -- [(x2

/-
sin 8+L cosS) cosg+z 2sin C-p] (36)

Using the centroidal point of dA 2 as one point on n2 and using the intersection point of dA 2 with the y = 0

plane as the other point on n2 gives

(x 2, L, z 2)

16
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and

(x 2, 0, z 2)

The length of n 1 is

n 1 = L (37)

and the direction cosines are

cos a 2 = 0

cos f12 = 1

cos 7 2 = 1

t (38)

Thus, cos ¢2 is

cos ¢2 =
L - p cos ¢ cos

(39)

The expressions the elemental areas are

dA 1 = p2 dd2d8

dA 2 = dx 2 dz 2

(40)

Substituting the latter into Eq. (10) gives, for the configuration factor, the following integral

p2 _A _d 2 [(x2sin_+Lc°s_)c°s_b+z2sin¢-p](L-pc°s¢c°sS)dCdOdxdz2

A1F12 = __

7rA1 [(x 2 - p cos _b sin 8) 2 + (L - p cos _b cos 0) 2 + (z 2 - p sin ¢)2] 2
1

(41)

Since the boundary of the sphere as seen from dA 2 is implicitly defined, it is possible to derive the limits of

integration. Obviously, the limits of integration for the sphere are obtained when cos ¢I = 0 or ¢I = 90 deg.

Setting cos qb I = 0 yields

17
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x 2 sin 8 cos_b +L cos_ cos_+z 2 sin _-p = 0 (42)

Assume that integration is to occur over _ first, then the latter equation must be solved for 8. Letting, for

convenience,

x 2 cos _ -- a ]

Lcos_ = b

p-z 2sin _b =d

(43)

Then

asin 8+b cos _ = d (44)

Now, it can be shown that

d a

= cos -1 ± tan -I __

(a 2 + b2) _ b
(45)

where the minus sign is for the lower limit and the plus sign for the upper limit. Substituting the proper

expressions for a, b, and d gives

p - z 2 sin _b x 2
= cos -1 ± tan -1

(x 2 + L 2) _ LCOS _/J

(46)

It can also be shown that the maximum and minimum values of _b occur when cos 41 = O, cos _ = L/(x 2 + L2) _

and sin 8 ffix2/(x2 + L2) _. Thus, by the same means that 8 is obtained, _ is obtained or

-- cos-I P ± tan -I z2

The boundaries of the plate are unknown and, therefore, will be represented by

(47)

integrated from x 2 = a 1 to x2 = a2.

z 2 ffi f(x 2) (48)

18
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Substituting the limits into Eq. (41) gives

A 1F12 - --

7/ o/fl(x2)

H (x2, z2, 8, _) d8 d_ dz 2 dx (49)

where H (x 2, z 2, 0, t_) is the integrand given in Eq. (41), and:

t_l =- COS -I

P
+ tan -1

z 2

(x 2 + L2) _

-1
_2 = COS

(4+ +4)y'
+ tan -1

z 2

(x 2 + L2) ½

0 1 =- cos -1
(p - z 2 sin _b)

[(x22 + L2) W cos _b]

+ tan -1 __
x 2

L

8 2
-1

= COS

(p - z 2 sin _b)

[(x2 + L2) W cos ¢]

+ tan -1
x 2

L

19
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IV. SPECIFIC SOLUTIONS

Since the technique requires that a separate integral be developed for each combination of

geometries, a study of various combinations was undertaken to determine the frequency of occurrence. From

the study, the commonly encountered geometries were determined and the integrals were developed. These

integrals are presented in the Appendix along with restrictions and individual peculiarities. In those cases

where one or more limits of integration are related to the geometry of the surface, such as the surface of a

cylinder or a sphere, the limits will be derived. The same caution applies to these integrals as to the pre-

viously derived integrals in regard to the selection of the limits. The following integrals will be presented

in the simplest form in compliance with complete generality, when possible. It might be added that a further

extension of the work could be made by extending the list of integrals and by integrating the existing

integrals one or more times, when possible. This latter extension would result in an appreciable decrease in

machine computing time.
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APPENDIX

Integrals for Configuration Factors for Some Common Geometrical Situations

I. TWO PLATES ARBITRARILY ORIENTED

A. Skewed from Parallel Orientation

SURFACE I-

dAI ; _

/

/

x I

_-f2(x2)

SURFACE 2"_ L _" _

/

z 2

/

/ /

/./"

L vy

F12 = __

yr A 1 o/g l(X 1) d/'l(X2)

F(z2, x 2, z l, x 1) dz 2 dx 2 dz 1 dx 1

where

F(z 2, x 2, z 1, x 1) =

(L -x 2 tan hb)(L -x 1 tan _)

[(x 2 - Xl)2 + (L - x 2 tan _b)2 + (z 2- Zl)2] 2

Restrictions:

1.

2.

3.

4.

-90 deg < _b < 90 deg

Surface 1 must lie in the y = 0 plane

/l(X2) and/2(x2) must be written in terms of x 2 and z 2

Surface 2 must be located so that it is perpendicular to the z = 0 plane

To be supplied: L, _, and limits of integration
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B. Skewed from Perpendicular Orientation

SURFACE I--_

n I

b bz

/
/

//
x I

_l nz r- tz (*z)

@

/

/
x 2

z

I

/

- y

Restri ctions:

1. -90 deg < c_ < 90 deg

2. Surface 1 must lie in the x -- 0 plane

3. Surface 2 must be perpendicular to the z = 0 plane

4. fl (x2) and f2 (x2) must be written in terms of x 2 and z 2

To be supplied:

L, ct, and limits of integration
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F12
1

7rA 1
fbl b2 fgl g2(yl) fal a2 I f2(x2)

(Y 1) °'/l(x 2)

F(z 2, x 2, z 1, x 1) dz 2 dx 2 dz l dy 1

where

F(z 2,x 2, z 1, x 1) =

x2(L -yl )

[(x2)2 + (L - x 2 tan a -yl )2 + (z 2 - Zl)2] 2

23
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II. CYLINDER AND PLATE ARBITRARILY ORIENTED

A. Plate Skewed from Position Parallel to Axis of Cylinder

Xl

nl

Zl

/

/

SURFACE

Restrictions:

l. -90 deg < _ < 90 deg

2. x! axis and cylinder axis must coincide

3. The plate must be pe_endicu]ar to the z = 0 plane

4. fl (x2) and/2 (x2) must be expressed in terms of x 2 and z 2

To be supplied:

Constants: p, L, and

Limits of integration: /1' /2'/1(x2 )' /2(x2 )' al' and a 2
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F21

1

7TA 2

F(_, Xl, z2, x2) d_ dx 1 dz 2 dx 2

where

-I
= -- COS

P -1 z2
+ tall

E_22+ (L - _2 t= 9)23 _ L -x 2 tan

_2
-1

= COS

z 2P
+ tan -I

Ez22 + (L - x 2 tan _)2] _ L -x 2 tan

F(_, Xl, z2, x2) =

p (L cos _-p + z 2 sin _-x 2 tan ¢ cos _)(L -p cos _-x 1 tan _)

[(x 2-xl)2+(L-x 2 tan _-p cos_2+(z 2_psin _)212
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B. Plate Skewed from Position Perpendicular to Axis of Cylinder

\

¢'z _ --v /i I

•' J

Xl / _P"_'-SURFACE I X/

Restrictions:

1. -90 deg < _b < 90 deg

2. y axis and cylinder axis must coincide

3. Plate must be perpendicular to z 2 = 0 plane

4. fl(X2) and f2(x2) must be expressed in terms of x 2 and z 2 only

5. Any portion of plate which lies within the circle x22+ z2 = p2 must be excluded in the integration

To be supplied:

Constants: L, p, and

Limits of integration: a 1, a2, fl (x2), f2 (x2), 11, and/2
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P
F21 = --

7zA 2

F(_, y, z 2, x 2) d8 dy clz2 ,ix 2

where

_1 - c°s-I P z2= + tan -I

_2 = c°s-1 P + tan-1 z2

F(_,y, z 2'x 2) =
(x 2 cos d_ - p + z 2 sin _) (L - y - p cos _ tan ¢)

[(p cos _ - x2)2 + (y - L + x 2 tan ¢)2 + (p sin _ - z2)2]

27



JPL Technical Report No. 32.127

III. CONE AND PLATE ARBITRARILY SKEWED

A. Plate Skewed from Position Parallel to Axis of Cone

El

SURFACE

nl n2

Restrictions:

1. -90 deg < _ < 90 deg

2. Axis of Cone must coincide with z I axis

3. Plate must be positioned perpendicular to x = 0 plane

4. fl(X2) and/'2 (x2) must be expressed in terms of x 2 and z 2

5. p must be radius of cone in the z = 0 plane

z2

//
// /

/
/ /

/
/

/

/

_vy

To be supplied:

Constants: L, p, K 2, _, and

Limits of integration: K 1, K 2, fl(x2), f2(x2), a 1, and a 2
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7rA2 a _'/l(X2) K 0

F(O, Zl, z2, x 2) d8 dz 1 dx 2 dz 2

where

R+(z 1-z 2) cot_ x 2

81 = - cos -1 + tan -1

[(L + z 2 tan _b)2 + x2) _ L + z 2 tan

R+(z 1-z 2) cot_. x 2
02 = cos -1 + tan -1

[(L + z2 tan 4_)2 + x 23_ L + z2 tan q_

F(8, Zl, z2, x 2) =

R[(L +z 2tan_b) cos 0+x 2sin 8+(z 2-z 1) cotk-R] [L+z ltan_b-R cosS]

[(x 2 - R sin 8) 2 + (L + z 2 tan _b - R cos 0) 2 + (z 2 - Zl)212

and R is derived as follows:

R=p
tan

where tan _ =
K 2

--, K 2
P

= cone apex location

therefore

29
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B. Plate Skewed from Position Perpendicular to Axis of Cone

zi

;URFACE 2

z 2

o

Restrictions:

1. -90 deg < /3 < 90 deg

2. Axis of cone must coincide with z 1 axis

3. Plate must be positioned perpendicular to x = 0 plane

4. fl (Y2) and/'2 (Y2) must be expressed in terms of x 2 and Y2

5. p must be radius of cone in the z = 0 plane

To be supplied:

Constants: L, p, K2, _,, and 13

Limits of integration: El, K 2, fl (Y2)'/2(Y2 )' al' and a2
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A1F12 = --

a ¢¢ fl(Y2 )

F(8, Zl, x2, y2 ) d8 dz 1 dx 2 dy 2

where

R-cot)_ (Y2 tan/_-z 1) x 2
8 1 = - cos-1 + tan -1

[(L + y2 )2 + x_] L + Y2

R-cot_(Y2 tan_-zl ) x 2

82 = cos -1 + tan -1

[(L + y2 )2 + x22] _ L + y2

F(8, Zl, X2, Y2 ) =
R [(L + Y2COS 8 - R + x 2 sin 8 + cot _. (Y2 tan/3 - Zl)] [(L - R cos 8) tan _ + z 1]

[(x2-R sin 8)2+(L +Y2-R cosS)2+(z-y 2tan/3)2] 2

and Y2 = Y - L, tan _ = K2/P, R =/9(1 - Zl/K2) , and K 2 is the location of the cone apex.
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IV. SPHERE AND PLATE

SURFACE 2

(PLATE)--_

Izl f2(x2)

SURFACE I n I

(SPHERE)7 _

x I

x2

z2

/

/

Restrictions:

I. Sphere must be located atx I =0; YI=O; Zl=O

2. Plate must be perpendicular to both x = 0 and z = 0 planes

To be supplied:

Constants: L and p

Limits of integration: a 1, a2, fI (x2)' and f2 (x2)
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p2

7zA 2
_l_la2

a

F(_, _, z2, x2) d_ d_ dz 2 dx 2

where

-1
= -- COS

P

(x2+ L2 + z2)_

+ tan -1
z 2

(x 2 + L 2 )_

_b2
-1

= COS

P
+ tan -1

z 2

(x 2 + L2) _

p - z 2 sin

_I = - c°s-i + tan-I --

(x 2 + L2) _ cos _b

x 2

L

_2

p- z 2 sin _p x 2
= cos -1 + tan -1

(x22 + L2) _ cos _ L

F(8,%z2, x 2) =

[(x 2 sin_ +L cosO) cosLp+z 2 sin_b-p](L-p cos_b cos 8)

[(x 2-p costpsin 0) 2+(L-pcosLp cos _)2+(z 2_p sin _b) 212
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V. CYLIHDER TO CYLINDER (TWO SPECIAL CASES)

A. Concentric Cylinders

n2

\

SURFACE 2_

/

/

/

SURFACE I

Restriction:

1. Cylinders must be parallel and concentric

To be provided:

Constants: /3 and p

Limits of integration: l 1, 12' 81' 82' kl' and k 2
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AIF12 = --

¢g81 o/ k I J q_l

F(8, q_, x r x2) dqJ dx 1 d8 dx 2

where _b1 -- -cos -1 _/p + 8, Sb2 = cos -1/3/p + 8, and

F(8, _b, Xl, x2) =

[(p co_(8 - V,)-/3] [/3_o_ (8 - _,)- p]

[(xI - x2)2 + (p cos _ -/_ cos _b)2 + (p sin 8 -/3 sin _b)2]
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B. Parallel Cylinder

/
8

l

I

SURFACe//

/

x2

n2

SURFACE

\

I /

dA2

/

.,v

Restri ction s:

i. p + _<L

2. Cylinders must be p_lel

3. The axis of one cylindermust coincide with xI axis

To be supplied:

Constants p, _ (radii of cylinders), and L

Limits of integration: l 1, l 2, k 1' and k 2
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A 1F12 =
_,1 12

l
_ k2 _;cos-l ({-p)/L _102

I _'cos-i(p +_)IL 0

F(x 1, x 2,_b, O) dO d_bdx 2dx 1

+

12 k 2 -cos-l(p+_)/L 04

F(xl, x2, _b, O) dO d_b dx 2 dx 1

+

1 _" -cos-1(p+_)/L 0

F(xl, x2, _b, _?) d8 d_b dx 2 dx 1

where

F (Xl,x2, _b8) =
p [L cosS-p-C cos(O+qJ)] [L cosq_-C-pcos(O+_b)]

7r [(x 1 - x2)2 + (L - p cos 8 - _ cos _b)2 + (p sin 0 - _ sin 9) 2] 2

Ol _cos_l p-L cos_b= +_b

02 _-_cos- I _ + tan-1 p sin _b

(p2 + L 2 _ 2L p cos _b)_ L - p cos _b

-1
_3 = cos

-1 p sin _b
+ tan

(p2 + L 2 _ 2L p cos _b)_ L - p cos _b

04= c°n-I p-Lcosq_ q_




